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Abstract. Machine learning has opened a new realm of possibilities in photonic circuit design and 
manufacturing. First, we describe our approach of using deep learning to optimize the multi-dimensional 
parameter space for hundreds of optical chips on a mask, resulting in homogeneity of performance in high 
volume applications. Second, we present our approach of using a support vector machine to predict the 
performance of optical devices by wafer probing. This approach eliminates the expensive and labour-intensive 
process of optical chip testing, and allows unprecedented control over the fabrication process, including in-
situ monitoring of wafer fabrication and real-time process adjustments. The combination of these two 
approaches paves the way for accelerated adoption of photonics in high volume applications. 

1  Introduction  
AI and ML have emerged as powerful tools for solving 
previously intractable problems across various domains, 
opening up new possibilities for innovation and 
advancement. Similar to other industries, the photonics 
industry has begun adopting AI and ML techniques to 
further both research and deployment of optical 
technologies. Photonic integrated circuits have grown into 
a powerful platform that can address the requirements of 
many of today’s demanding applications. The versatile 
characteristics of photonic integrated circuits [1] make 
them a desirable solution for realizing multiplexers [2], 
ultra-dense interferometric architectures [3], as well as 
long delay lines and K-clocks, leading to their wide 
adoption not only in telecommunications but also in 
optical coherence tomography (OCT) and LiDAR 
systems [4].  

Here we present how AI and ML have revolutionized 
the field of photonic integrated circuit design and 
manufacturing, allowing mass deployment of high-
performance optical chips for communication, advanced 
vision and imaging applications. We use deep learning to 
optimize the multi-dimensional design parameter space 
for hundreds of chips on a production mask. We also use 
a support vector machine to predict the performance of 
optical devices by wafer probing. These approaches allow 
us to achieve an unprecedented control over our 
fabrication process, leading to consistently high-yields in 
a high volume manufacturing setting. 

2  ML-driven design optimizations  

Photonic integrated circuits have been widely used to 
realize high-performance wavelength division 
multiplexing (WDM) devices for both telecom and 

datacom applications [5-6]. A typical 6" silicon wafer 
contains hundreds of optical chips. Even when these chips 
are designed to be identical, minute variations in the 
physical parameters within a wafer can lead to significant 
performance variations [7]. Fig. 1(a) and 1(b) show the 
transmission spectra of two chips on the same wafer. 
Despite the same design parameters, their performance 
varies vastly due to inevitable variations in the fabrication 
process. In fact, a wide gradation in performance exists as 
can be seen if we overlay the spectra of many nominally 
identical chips from the same wafer, as shown in Fig. 1(c).  
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Fig. 1. (a) A transmission spectrum for a multiplexer chip 
with good performance. (b) A transmission spectrum of a 
multiplexer chip with poor performance on the same 
wafer. (c) Variation in the performance of 30 identically-
designed chips due to inevitable variations in the 
fabrication process. (d) Homogeneity of performance 
achieved after ML was used to optimize the design 
parameters.  
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 The high dimensionality of the design and fabrication 
parameters of photonics chips is ideally suited for deep 
neural networks that can deduce complex relationships 
and uncover underlying patterns. We deployed a deep 
neural network to study the variation in the performance 
of individual chips, and then inferred the design 
parameters that characterize a particular photonic chip. 
The difference between the inferred as-fabricated design 
parameters and the intended design parameters is captured 
for each chip on a wafer, and is compensated for in a new 
optimized production mask. In this new version of the 
mask, the devices are no longer identical but vary as 
dictated by the deep neural network model. This approach 
gives us the ability to achieve homogeneity of 
performance over hundreds of devices fabricated on a 
single wafer, despite inevitable variations in the 
fabrication process, as shown in Fig. 1(d) 

3  Prediction of chip performance  

Traditionally, the photonics industry has relied on manual 
chip testing to gauge the performance of the optical chips. 
This is a time-consuming and labour-intensive process 
that becomes prohibitively expensive in high volume 
production.  
 We have developed a new technology that relies on a 
wafer probe that collects information to predict the 
performance of all the chips on the wafer, without 
requiring individual chip measurements. Fig. 2(a) shows 
the typical probe spectra collected from 64 locations on 
the wafer. The goal is to use these spectra to predict the 
pass / fail distribution of hundreds of chips on a wafer. An 
example of such distribution, achieved by traditional 
optical chip testing, is shown in Fig. 2(b). Note that the 
pass / fail state of an individual chip is determined by a 
list of about a hundred metrics (per channel insertion loss, 
passband shape, detuning, crosstalk, etc.), and is therefore 
a complex multi-dimensional problem.  
 We trained a support vector machine (SVM) to 
perform nonlinear binary classification (pass / fail) based 
on the probe measurement. The prediction of the SVM for 
a particular wafer is shown in Fig. 2(c). In contrast to the 
multi-day effort that it takes to characterize the hundreds 
of optical chips by traditional means and obtain the 
distribution in Fig. 2(b), the total time required to perform 
the probe measurement and obtain the predicted map 
shown in Fig. 2(c) is under 12 minutes. We use the 
receiver operating characteristic (ROC) curves to cross-
validate our binary classifiers and employ an incremental 
learning algorithm. This approach not only performs the 
same task in a much more cost- and time-effective way, 
but also gives us an unprecedented control over our 
process – since the wafer remains undiced, we are able to 
perform in-situ monitoring of wafer fabrication and 
introduce real-time adjustments as required.   
 
 
 

 

3 Conclusions 
In this work, we have described our use of AI/ML in the 
field of photonic integrated circuit design and 
manufacturing. We used a deep neural network 
multivariate regression model to optimize the individual 
design parameters of hundreds of optical chips on a mask. 
We deployed a support vector machine (SVM) to predict 
the performance of optical chips in multi-dimensional 
space. The combination of these two approaches brings 
the power of machine learning to both the design of 
optical chips and their manufacturing, allowing us to 
achieve consistently high performing optical chips at 
large production volumes.  
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Fig. 2. (a) Typical transmission spectra collected by the 
wafer probe. (b) Pass (green) / fail (orange) distribution of 
over 400 chips on a given wafer, obtained by traditional 
optical chip testing. (c) Pass / fail probability distribution 
of the same wafer as predicted by an SVM based on a 
probe measurement.  
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